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ABSTRACT

Change detection is a critical task in the diagnosis of many

slowly evolving pathologies. This paper describes an ap-

proach that semi-automatically performs this task using lon-

gitudinal medical images. We are specifically interested in

meningiomas, which experts often find difficult to monitor as

the tumor evolution can be obscured by image artifacts. We

test the method on synthetic data with known tumor growth

as well as ten clinical data sets. We show that the results of

our approach highly correlate with expert findings but seem

to be less impacted by inter- and intra-rater variability.

Index Terms— tumor, follow-up, time series analysis

1. INTRODUCTION
Meningiomas are the most common type of primary brain tu-

mor. Most of these tumors are categorized as benign pathol-

ogy that grows slowly between brain tissue and dura. To avoid

the risk of surgery, neurosurgeons carefully monitor patients

with benign meningiomas by having the patient regularly un-

dergo Magnetic Resonance (MR) scanning. An expert assess

the tumor growth through visual inspection of consecutive 3D

scans. A precise analysis, however, is extremely difficult as

slow growth is often obscured by changes in the head posi-

tion or intensity profile between the two scans. We address

this issue by describing a relatively fast and robust method

that semi-automatically analyzes the tumor evolution.

One can compute volume change by separately segment-

ing each scan in the time series via automatic tumor seg-

menters, such as [3, 4]. This type of analysis, however, is

very sensitive to intra-rater variability. Rey et al. [1] there-

fore proposed a pipeline consisting of non-rigidly aligning

brain scans of the same patient and then analyzing the result-

ing deformations. The approach is tested on multiple sclero-

sis lesions where the growth is clearly visible. The method by

Angelini et al. [2] rigidly aligns the sequences of images, nor-

malizes their intensities, and then computes difference maps

between them. They apply the approach to low grade gliomas,

where the growth is above 30% and also clearly visible. We

are aware of the incompleteness of this review. Nevertheless,
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we note that most automatic methods for monitoring slowly

evolving pathology focus on visible growth.

To the best of our knowledge, our approach is the first in

medical vision to automatically measuring growth of brain

tumors that is difficult to determine via visual inspection.

Our approach first semi-automatically segments the tumor in

the initial patient scan. It then aligns the second scan of the

patient to the first using a hierarchical rigid registration ap-

proach. Finally, it measures growth or shrinkage from these

images, for which we suggest two different types of metric.

Motivated by [2], the first metric detects change through an-

alyzing differences in intensity distributions. Unlike [2], we

relate the analysis to hypothesis testing. The second metric is

motivated by the work of [1], which detects change by ana-

lyzing the deformation field between two scans. Unlike [1],

our metric returns a quantitative analysis of the differences in

volume (mm3). Our approach also differs significantly from

works on segmentation, such as [3, 4], as we estimate volume

change by simultaneously analyzing the sequence of scans.

The approach is described in detail in Section 2 and the

accuracy of the method is evaluated in Section 3. We first

show on synthetic data that our analysis is more reliable than

visual inspection. We then apply our method to 10 clinical

MR scans and compare them again to expert determinations.

2. SEMI-AUTOMATIC CHANGE DETECTION
The software pipeline is composed of three steps, which are:

tumor segmentation, image registration, and change detec-

tion. The first step semi-automatically identifies the tumor

in the first scan only. In order to avoid issues of intra-rater

variability, we use manual supervision in one time point only.

We also prefer semi-automatic over automatic segmentation

as the accuracy of semi-automatic approaches in identifying

pathology is generally higher. Our pipeline relies on accurate

segmentation in order to detect changes of a few voxels in

pathology. A more in depth discussion of current segmenta-

tion technology is outside the scope of this paper.

The semi-automatic segmentation is based on a user-

defined bounding box (BB) around the tumor and a lower

bound of the intensities that characterize the pathology. From

these indicators, the pipeline can reliably extract most of

the pathology because meningioma generally show up on

post-gadolinium, T1-weighted MR images as homogeneous,

bright objects [5]. The pipeline post-processes the resulting

binary map by removing small islands and holes caused by
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the noise in the MRs. We note that the resulting map I(1)
seg will

also include part of the dura and vessels since these structures

have intensity patterns that are similar to pathology. However,

because they are static, these additional structures should not

substantially impact the analysis.

The second step automatically aligns the pathology of the

second scan to the first. It does so by rigidly registering [6] the

scans. Now, we assume that the previous BB is large enough

so that its coordinates also define a BB around the pathology

in the second scan. We then accommodate partial voluming in

images by increasing the resolution of both BBs. Finally, the

framework addresses non-linear perturbation artifacts caused

by the MR acquisition by rigidly aligning the contents of the

BBs with each other. This results in two images where, in the-

ory, barring temporal changes, the pathology is well aligned.

The final step of our approach measures the tumor evolu-

tion based on the initial segmentation and the BBs described

above. We now propose three metrics for detecting change.
2.1. Statistical Analysis of Change
The first metric is based on a statistical model that differenti-

ates changes in the intensity patterns that are due to evolving

pathology rather than image artifacts. From this model, we

can infer a label map T , where each voxel in the image I

is labeled as dormant or non-modified tissue (N), or growing

(G) or shrinking (S) pathology. The change in tumor size is

the difference in the number of voxels labeled as G versus S.

Let I(1) and I(2) be the images resulting from the second

step and I(abs) � abs(I(1) − I(2)) the absolute difference

between the two intensities. In general, I(abs) is much larger

at regions of changing pathologies (G and S) versus dormant

tissue N. Thus, we can compute T more easily if we know

the threshold that separates those two regions in I(abs). This

threshold can be estimated via a hypothesis test.

The test is specified by the null hypothesis that image ar-

tifacts caused the changes in intensity, and the false positive,

which is the error for rejecting the null hypothesis given that

it is actually true. Furthermore, the training data N is com-

posed of voxels of the image domain I certainly assigned to

N and the test data N � I\N are the remaining voxels in the

image. If we now assume that both images are some what

well aligned and the evolution of pathology is fairly small

then N can be simply estimated from I(1)
seg . We then approx-

imate P (I(abs)
x |Tx = N), the probability of intensity differ-

ences due to image artifacts at voxel x, by the normalized

histogram of I(abs) confined to N. The false positive is de-

noted as s ∈ [0, 1], where a voxel x ∈ N is assigned to N if

I(abs)
x < σ−1(s) with the inverse of the cumulative function

defined as σ−1(s) � arg minl{P (I(abs)
x < l|Tx = N) = s}.

We know that I(1)
x �I(2)

x indicates growth and I(1)
x �I(2)

x

shrinkage. Thus, the map T at voxel x ∈ I is defined as

Tx(s) �

⎧
⎪⎨

⎪⎩

G, I(2)
x > I(1)

x + σ−1(s) ∧ x ∈ N

S , I(1)
x > I(2)

x + σ−1(s) ∧ x ∈ N

N, otherwise,

and Vsta(s)�
∑

x∈I
(Tx(s)&G)−(Tx(s)&S) captures change.

2.2. Deformable Model Based Analysis
The second type of metric measures the tumor evolution by

analyzing the deformation field D : I(1) �→ I(2) that maps

the first BB to the second one. We further confine the analysis

to the region L defined by the segmentation of the first step to

omit any information in D(·) unrelated to the tumor.

We determine D(·) by the algorithm explained in [7] that

is based on the well known demons method. This non-rigid

registration algorithm computes D(·) by finding the diffeo-
morphic transformation that best aligns the intensity informa-

tion of the first BB to the second. Any evolving tumor tissue

causes differences in the local intensity pattern of the scans

that are captured by D(·) as the registration algorithm brings

the images into agreement. The diffeomorphic constraint fur-

ther confines D(·) to be smooth so that artifacts due to noise

are reduced. While other approaches are well suited for this

task, a proper review is outside the scope of this paper.

After computing D(·), we can choose from a variety of

methods to determine V (2), the volume of pathology in the

second scan. Here, we introduce V
(2)
jac , a metric based Jaco-

bian determinants and V
(2)
def , which measures the volume by

applying the deformation field to the binary map I(1)
seg:

V
(2)
jac �

∑
x∈L

|JD(x)| (1)

V
(2)
def �

∑
x∈I

(I(1)
seg ◦ D)(x). (2)

|JD(x)| denotes the Jacobian determinant of D(·) at voxel

x. Vreg � V (2)−V (1), the volumetric difference between the

pathology in the second V (2) and first scan V (1) �
∑

x I
(1)
seg(x),

quantifies the evolution of the pathology.

We provide an implementation of the methodology as part

of the 3D Slicer (www.slicer.org). The semi-automatic analy-

sis is easy to calibrate and completes in less than five minutes

returning the total area of tumor change in mm3.

3. TESTING OUR METRICS

In the following we characterize our methods in two experi-

ments. We first measure the accuracy of our approach using

synthetic tumor data, where we artificially enlarge the menin-

gioma in the MR scan of a single patient. The synthetic data

is also visually inspected by an expert to test the accuracy of

human raters. The second experiment uses a series of MR

scans from 9 patients with meningiomas. The same expert

labels the series of scans as tumor growing or dormant. Our

tool is then applied to data and compared to manual findings.

Both experiments are based on clinical MR scans that

were acquired through the Department of Radiology, Brigham

and Women’s Hospital, Boston under normal hospital envi-

ronment using a 1.5 T General Electric Scanner (axial slice

direction, post-gadolinium, matrix: 256×256×130, voxel di-

mension: 0.9375 mm × 0.9375 mm × 1.2 mm).
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real MR 1% (10mm3) 5% (48mm3) 22% (195mm3)

Fig. 1. The real scan of the patient with synthetically evolving

pathology of 1%, 5% and 22% volume growth. Notice, the

similarities of images with 1% and 5% growth to the real one.

True INTENSITY JACOBIAN SEGMENT EXPERT

(%) (avg±std) (avg±std) (avg±std) (Ratio)

1.1 0.14 ± 0.13 3.5 ± 1.11 0.6 ± 0.94 0/5

5.4 2.2 ± 0.48 7.0 ± 1.22 4.4 ± 1.30 1/5

22.0 13.6 ± 0.32 21.0 ± 0.80 19.0 ± 0.87 5/5

Table 1. The mean and standard deviation of the three met-

rics (INTENSITY, JACOBIAN, SEGMENT) in detecting the

growth (True) and the success ratio of a clinician (EXPERT).

3.1. Synthetic Example
We quantitatively assess our approach by analyzing its results

on a synthetic data set, where the amount of growth between

two scans is known. Furthermore, we show the difficulties

of this task for humans by having a radiologist detect growth

through visual inspection of the scans.

We construct our test data by virtually growing the pathol-

ogy in a brain MR scan of a meningioma patient (see Figure

3.1). The growth is simulated via a simple mechanical model,

which performs homogeneous expansion by deforming the

surrounding tissue around the tumor while keeping the skull

fixed [8]. The model also assumes that the enhancing agent

uptake of the grown tumor is similar to the initial scan.

We use the simulator to create eight different tumor scans

ranging from 1% to 22% growth in volume of the pathology.

We then apply ten randomly generated rigid transformations

to each of the scans that simulate changes in head positions

between consecutive scans. This results in 80 test data sets in

which the exact tumor growth is known.

Figure 2 and Table 1 summarize the experiment. INTEN-

SITY corresponds to results of the statistically motivated met-

ric of Section 2.1, while the entries of JACOBIAN (Equation

1) and SEGMENT (Equation 2) analyze the deformation field

as described in Section 2.2. The mean and standard deviation

of each metric is based on the corresponding ten measure-

ments for each true growth value (True). In addition, the table

shows the success ratio of a radiologist in correctly identify-

ing growth. To determine this ratio, the radiologist looked at

15 of 80 scans to decide whether the tumor was dormant or

growing in correspondence to the first scan.

In this experiment, all three metrics successfully detect

even small growth. Although, in the 1% case the INTEN-

Fig. 2. The results of the three metrics based on synthetic

data set where the growth in known (dotted line). The x-axis

represents the true growth while the y-axis corresponds to the

growth computed by the metrics.

SITY and the SEGMENT analyses show intervals of confi-

dence including zero growth in the Table 1, when we look at

the individual cases they both detect growth for 7 out of 10

cases. Based on the mean value, SEGMENT most accurately

recovers the true growth (represented by the dotted line) in

most cases. INTENSITY seems to be least impacted by the

head position as shown by the relatively small standard devia-

tion. Both INTENSITY and SEGMENT generally underesti-

mate the growth and all three metrics are significantly differ-

ent from each other. Furthermore, the very low success rate of

the radiologist for 1% and 5% growth indicates the difficulties

in visually detecting small growth. The results suggests that

our tool successfully detects growth even when visual inspec-

tion is very difficult.

3.2. Real Images
In the second experiment, we apply our tool to MR scans

taken from nine patients with slowly evolving meningiomas.

Eight out of nine data sets consisted of two consecutive scans

while one contained three scans. In addition to the automatic

measurements, a radiologist determined the volume growth

by manually segmenting the tumor in each scan.

The result of this experiment are summarized in Table

2. Based on the manual measurements, the data set consists

mostly of cases with less than 100 mm3 growth, which is gen-

erally very difficult to detect. The automatic measurements

generally agree with the manual ones in all but two cases

(Case 4 and Case 5). Figures 3 show a sample slice of the

first and second scan of Case 4. The intensity pattern of the

tumor varies considerably between the acquisitions, which is

unusual from our experience, and violates one of the under-

lying assumptions of the pipeline. These intensity differences

may be caused by necrosis or fibrosis, which are very rare in

meningioma [5], or changes in the acquisition protocol, which

seems to be the case here. The inconsistencies observed in

Case 5 are to due to the relatively small tumor volume, which

is 334 mm3 (270 voxels). For such small tumors, distinguish-

ing growth from interpolation artifacts is relatively difficult.
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Case EXPERT INTENSITY JACOBIAN SEGMENT
% mm3 % mm3 % mm3 % mm3

1 4.8 596 9.7 1202 3.6 447 3.5 433
2 5.4 883 4.2 677 8.16 1325 9.14 1483
3 −0.4 −2.5 0.7 3.9 −1.1 −6.3 −2.3 −13
4 −7.3 −743 2.9 299 16.2 1660 20.1 2063
5 −23.3 −77 17.1 57 38.1 127 36.7 122
6 −6.3 −323 0.26 13.3 −11.8 −608 −13.7 −706
7 0.1 6.33 2.7 174 −0.9 −58 0.8 53
8a 5.3 71 0.4 5.7 5.1 69 5.0 68
8b −1.9 −25 0.1 1.3 1.5 20 1.4 18
9 38.9 1165 25.1 751 29.7 887 25.6 764

Table 2. The tables list manual and automatic volume differ-

ences of 10 MR sequences. Case 8a and 8b represent the vol-

ume differences between the first and second scan, and first

and third scan. The relatively large agreement across all met-

rics between growth and dormant cases is striking. The two

cases (4 and 5) where the expert results differ from the al-

gorithm estimations are particular cases explained in the text.

We would like to note, however, that not all radiologists we

consulted diagnosed these two cases as meningiomas.

A more typical sample of our data set is shown in the

first row of Figures 3 corresponding to the scans of Case 2.

The second row shows the differences in detection illustrating

again the difficulties in visual analysis. The close correlation

between expert and automatic findings for tumors with less

than 2% growth is therefore very satisfying.

We also test the metrics for intra-rater variability. In

the first test, the expert repeated the segmentation of Case

2 three times with a week of separation each time. These

measurements varied substantially (first: 883.8mm3, second:

545.8mm3, third: −99.8mm3), which demonstrates the large

variability in manual measurements of small tumor growth

(less 1 cm3 in volume). It also shows that the differences

between the automatic and manual measurements are within

the variations expected from manual measurements. In the

second test, we analyze the intra-rater variability by com-

paring the growth measurements between first and second

scan (case 8a), and first and third scan (case 8b). The time

lapse between scan two and three was very small so that we

would expect small differences between the measurements.

The volume changes estimated by the radiologist, 71.7mm3

and −25.3mm3, differ, while the automatic measurements,

especially of INTENSITY, only slightly change.

4. CONCLUSION
We have discussed an approach that successfully measured

the volume change of slowly evolving meningioma from

two successive MR scans. The correlation to expert findings

shows the potential of the tool. Moreover, the tool seems to

be less impacted by intra and inter-rater variability than the

human expert as shown by the variance analysis in Section 3.

In summary, this experiments not only stressed the need for

observer independent tools for detecting volume change in

slowly growing tumors but also provided a possible solution.

Case 2 - Scan1 Case2 - INTENSITY Case 4 - Scan 1

Case 2 - Scan2 Case2 - SEGMENT Case 4 - Scan 2

Fig. 3. The figure shows sample slices of Case 2 with the cor-

responding growth detection. Striped regions indicate manu-

ally detected growth, while checkerbox is the result of IN-

TENSITY and SEGMENT. The results of JACOBIAN are

omitted as they are hard to visualize. Also note, that some of

the “displaced” manually detected growth is due to alignment

issues between scans. We observe that the evolution of the

tumor is indeed very small, which our approach successfully

captures. The third row shows Case 4, which was difficult to

analyze due to changes in the intensities between the scans.
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